
P.H. Diamond

Dept. Astronomy and Astrophysics, and Dept. 

Physics, U.C. San Diego

RIMS Workshop, Kyoto, 2023

Elastic Turbulence: 

A Look at Some Simple Systems

This research was supported by the U.S. Department of Energy, Office of Science, Office of 
Fusion Energy Sciences, under Award Number DEFG02-04ER54738.



Collaboration: Xiang Fan, Luis Chacon, Hui Li

Discussions:  R. Pandit, S.M. Tobias,

A. Gruzinov, D.W. Hughes, D.R. Nelson,

F. Cattaneo



• What and Why of Elastic Fluids, and CHNS, in particular

CHNS ≡ Cahn-Hilliard Navier-Stokes

• Single Eddy Problem

• CHNS Turbulence

• Transport and Beyond

• Lessons – General and Specific
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What and Why of

Elastic Fluids?



Elastic Fluid -> Oldroyd-B Family Models

𝛾
𝑑 റ𝑟1,2

𝑑𝑡
− റ𝑣 റ𝑟1,2, 𝑡 = −

𝜕𝑈

𝜕 റ𝑟1,2
+ റ𝜉 , where 𝑈 =

𝑘

2
റ𝑟1 − റ𝑟2

2 +⋯

so
𝑑𝑅

𝑑𝑡
= റ𝑣 𝑅, 𝑡 + റ𝜉/𝛾 , and

𝑑𝑞

𝑑𝑡
= റ𝑞 ⋅ 𝛻 റ𝑣 𝑅, 𝑡 −

2

𝛾

𝜕𝑈

𝜕𝑞
+ noise
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→ Solution
of Dumbells

H2O

റ𝑟1 റ𝑟2
← റ𝑞 →

𝑅 = റ𝑟1- റ𝑟2
റ𝑣(റ𝑟1, 𝑡) റ𝑣(റ𝑟2, 𝑡) Internal DoF

i.e. polymers

stokes drag entropic spring
noise



Seek 𝑓( റ𝑞, 𝑅, 𝑡| റ𝑣, … ) → distribution

𝜕𝑡𝑓 + 𝜕𝑅 ⋅ റ𝑣 𝑅, 𝑡 𝑓 + 𝜕𝑞 ⋅ റ𝑞 ⋅ 𝛻 റ𝑣 𝑅, 𝑡 𝑓 −
2

𝛾

𝜕𝑈

𝜕𝑞
𝑓

= 𝜕𝑅 ⋅ 𝐃0 ⋅
𝜕𝑓

𝜕𝑅
+ 𝜕𝑞 ⋅ 𝐃q ⋅

𝜕𝑓

𝜕𝑞

and moments:

𝑄𝑖𝑗 𝑅, 𝑡 = ∫ 𝑑3𝑞 𝑞𝑖𝑞𝑗𝑓( റ𝑞, 𝑅, 𝑡) → electric energy field (tensor)

so:

𝜕𝑡𝑄𝑖𝑗 + റ𝑣 ∙ 𝛻𝑄𝑖𝑗 = 𝑄𝑖𝛾𝜕𝛾𝑣𝑗 + 𝑄𝑗𝛾𝜕𝛾𝑣𝑖
−𝜔𝑧𝑄𝑖𝑗 + 𝐷0𝛻

2𝑄𝑖𝑗 + 4
𝑘𝐵𝑇

𝛾
𝛿𝑖𝑗

 Defines Deborah number: 𝛻 റ𝑣 /𝜔z

6

Is F.P. valid?!

strain

relaxation

and concentration
equation



Reaction on Dynamics

𝜌[𝜕𝑡𝑣𝑖 + റ𝑣 ∙ 𝛻𝑣𝑖] = −𝛻𝑖𝑃 + 𝛻𝑖 ⋅ [𝑐𝑝𝑘𝑄𝑖𝑗] + 𝜂𝛻2𝑣𝑖 + 𝑓𝑖

Classic systems; Oldroyd-B (1950).

Extend to nonlinear springs (FENE), rods, rods + springs, networks,
director fields, etc…

Supports elastic waves and fluid dynamics, depending on Deborah
number.

Oldroyd-B ↔ active tensor field
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elastic stress



Constitutive Relations

J. C. Maxwell:

(stress) + 𝜏𝑅
𝑑(stress)

𝑑𝑡
= 𝜂

𝑑

𝑑𝑡
(strain)

If 𝜏𝑅/𝑇 = 𝐷 ≪ 1, stress = 𝜂
𝑑

𝑑𝑡
(strain)

𝜎 = −𝜂𝛻 റ𝑣

If 𝜏𝑅/𝑇 = 𝐷 ≫ 1, stress ≅
𝜂

𝜏𝑅
(strain)

~ E (strain)

Limit of “freezing-in”: D>1 is criterion.
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relaxation viscosity

𝑇 ≡ dynamic
time scale



• 𝐷 ~  Deborah Number  ~  𝛻𝑉 /𝜔𝑍 ~  𝜏𝑟𝑒𝑙𝑎𝑥/𝜏𝑑𝑦𝑛

• Limit for elasticity:  𝐷 ≫ 1 limit for elasticity

• Why “Deborah”? 

Hebrew Prophetess Deborah: 

“The mountains flowed before the Lord.” (Judges)

∴

• Revisit Heraclitus (1500 years later): 

 “All things flow” – if you can wait long enough



Relation to MHD?!

Re-writing Oldroyd-B:
𝜕

𝜕𝑡
𝐓 + റ𝑣 ∙ 𝛻𝐓 − 𝐓 ⋅ 𝛻 റ𝑣 − 𝛻 റ𝑣 𝑇 ⋅ 𝐓 =

1

𝜏
(𝐓 −

𝜇

𝜏
𝐈)

MHD: 𝐓𝑚 =
𝐵𝐵

4𝜋

𝜕𝑡𝐵 + റ𝑣 ∙ 𝛻𝐵 = 𝐵 ∙ 𝛻 റ𝑣 + 𝜂𝛻2𝐵

So
𝜕

𝜕𝑡
𝐓𝑚 + റ𝑣 ∙ 𝛻𝐓𝑚 − 𝐓𝑚 ⋅ 𝛻 റ𝑣 − 𝛻 റ𝑣 𝑇 ⋅ 𝐓𝑚 = 𝜂[𝐵𝛻2𝐵 + (𝛻2𝐵)𝐵]

 lim
𝐷→∞

(Oldroyd-B) ⟺ lim
𝑅𝑚→∞

(MHD)
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𝐓 ≡ stress

c.f. Ogilvie and Proctor



Elastic Media -- What Is the CHNS System?

Elastic media – Fluid with internal DoFs “springiness”

The Cahn-Hilliard Navier-Stokes (CHNS) system describes phase separation
for binary fluid (i.e. Spinodal Decomposition)

11

AB

Miscible phase 
 Immiscible phase

[Fan et.al. Phys. Rev. Fluids 2016] [Kim et.al. 2012]



Elastic Media? -- What Is the CHNS System?

How to describe the system: the concentration field

𝜓 റ𝑟, 𝑡 ≝ [𝜌𝐴 റ𝑟, 𝑡 − 𝜌𝐵 റ𝑟, 𝑡 ]/𝜌 : scalar field → density contrast

𝜓 ∈ [−1,1]

CHNS equations (2D):

𝜕𝑡𝜓 + റ𝑣 ∙ 𝛻𝜓 = 𝐷𝛻2(−𝜓 + 𝜓3 − 𝜉2𝛻2𝜓)

𝜕𝑡𝜔 + റ𝑣 ∙ 𝛻𝜔 =
𝜉2

𝜌
𝐵𝜓 ∙ 𝛻𝛻2𝜓 + 𝜈𝛻2𝜔
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Why Should a Plasma Physicist Care?

Useful to examine familiar themes in plasma turbulence from new 
vantage point 

Some key issues in plasma turbulence:

1. Electromagnetic Turbulence
• CHNS vs 2D MHD: analogous, with interesting differences.

• Both CHNS and 2D MHD are elastic systems

• Most systems = 2D/Reduced MHD + many linear effects 

Physics of dual cascades and constrained relaxation relative 
importance, selective decay…

Physics of wave-eddy interaction effects on nonlinear transfer (i.e. Alfven 
effect Kraichnan) 

13

MHD CHNS



Why Care?

2. Zonal flow formation  negative 
viscosity phenomena
• ZF can be viewed as a “spinodal

decomposition” of momentum.

• What determines scale?

14

[Porter 1981]

Spinodal Decomposition

Arrows:
𝜓 for CHNS;
flow for ZF.

http://astronomy.nju.edu.cn/~lixd/GA/AT4/AT411/HTML/AT41102.htm

Zonal Flow



[J. A. Boedo et.al. 2003]

Why Care?

3. “Blobby Turbulence”
• CHNS is a naturally blobby system of

turbulence.

• What is the role of structure in
interaction?

• How to understand blob coalescence and 
relation to cascades?

• How to understand multiple cascades of
blobs and energy?
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• CHNS exhibits all of the above, with many new twists 



A Brief Derivation of the CHNS Model

Second order phase transition  Landau Theory.

Order parameter: 𝜓 റ𝑟, 𝑡 ≝ [𝜌𝐴 റ𝑟, 𝑡 − 𝜌𝐵 റ𝑟, 𝑡 ]/𝜌

Free energy:

F 𝜓 = න𝑑റ𝑟(
1

2
𝐶1𝜓

2 +
1

4
𝐶2𝜓

4 +
𝜉2

2
|𝛻𝜓|2)

𝐶1(𝑇), 𝐶2(𝑇).

Isothermal 𝑇 < 𝑇𝐶. Set 𝐶2 = −𝐶1 = 1:

F 𝜓 = න𝑑റ𝑟(−
1

2
𝜓2 +

1

4
𝜓4 +

𝜉2

2
|𝛻𝜓|2)

16

Phase Transition Gradient Penalty



A Brief Derivation of the CHNS Model

Continuity equation: 
𝑑𝜓

𝑑𝑡
+ 𝛻 ∙ Ԧ𝐽 = 0. Fick’s Law: Ԧ𝐽 = −𝐷𝛻𝜇.

Chemical potential: 𝜇 =
𝛿𝐹 𝜓

𝛿𝜓
= −𝜓 + 𝜓3 − 𝜉2𝛻2𝜓.

Combining above  Cahn Hilliard equation:

𝑑𝜓

𝑑𝑡
= 𝐷𝛻2𝜇 = 𝐷𝛻2(−𝜓 + 𝜓3 − 𝜉2𝛻2𝜓)

𝑑𝑡 = 𝜕𝑡 + റ𝑣 ∙ 𝛻. Surface tension: force in Navier-Stokes equation:

𝜕𝑡 റ𝑣 + റ𝑣 ∙ 𝛻 റ𝑣 = −
𝛻𝑝

𝜌
− 𝜓𝛻𝜇 + 𝜈𝛻2 റ𝑣

For incompressible fluid, 𝛻 ∙ റ𝑣 = 0.
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2D CHNS and 2D MHD

2D CHNS Equations:

𝜕𝑡𝜓 + റ𝑣 ∙ 𝛻𝜓 = 𝐷𝛻2(−𝜓 + 𝜓3 − 𝜉2𝛻2𝜓)

𝜕𝑡𝜔 + റ𝑣 ∙ 𝛻𝜔 =
𝜉2

𝜌
𝐵𝜓 ∙ 𝛻𝛻

2𝜓 + 𝜈𝛻2𝜔

With റ𝑣= መറ𝑧 × 𝛻𝜙, 𝜔 = 𝛻2𝜙, 𝐵𝜓 = መറ𝑧 × 𝛻𝜓, 𝑗𝜓 = 𝜉2𝛻2𝜓.

2D MHD Equations:

𝜕𝑡𝐴 + റ𝑣 ∙ 𝛻𝐴 = 𝜂𝛻2𝐴

𝜕𝑡𝜔 + റ𝑣 ∙ 𝛻𝜔 =
1

𝜇0𝜌
𝐵 ∙ 𝛻𝛻2𝐴 + 𝜈𝛻2𝜔

With റ𝑣= መറ𝑧 × 𝛻𝜙, 𝜔 = 𝛻2𝜙, 𝐵 = መറ𝑧 × 𝛻𝐴, 𝑗 =
1

𝜇0
𝛻2𝐴.
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−𝜓: Negative diffusion term

𝜓3: Self nonlinear term

−𝜉2𝛻2𝜓 : Hyper-diffusion
term

𝐴: Simple diffusion term



Linear Wave

CHNS supports linear “elastic” wave:

𝜔 𝑘 = ±
𝜉2

𝜌
𝑘 × 𝐵𝜓0 −

1

2
𝑖 𝐶𝐷 + 𝜈 𝑘2

Where

Akin to capillary wave at phase interface. Propagates only along the

interface of the two fluids, where |𝐵𝜓| = |𝛻𝜓| ≠ 0.

Analogue of Alfven wave.

Important differences: 

𝐵𝜓 in CHNS is large only in the interfacial regions.

Elastic wave activity does not fill space.

19

Air

Water

Capillary Wave:



What of a Single Eddy?

(Homogenization)



Flux Expulsion

Simplest dynamical problem in MHD (Weiss ‘66, et. seq.)

Closely related to “PV Homogenization”

Field wound-up, “expelled” from eddy

For large Rm, field concentrated in boundary layer of eddy

Ultimately, back-reaction asserts itself for sufficient B0

21

B0

Rm~vL/𝜂 ≫ 1



How to Describe?

Flux conservation: B0L~bl Wind up: b=nB0 (field stretched)

Rate balance: wind-up ~ dissipation
𝑣

𝐿
𝐵0 ∼

𝜂

𝑙2
𝑏 . 𝜏𝑒𝑥𝑝𝑢𝑙𝑠𝑖𝑜𝑛 ∼

𝐿

𝑣0
𝑅𝑚1/3.

𝑙 ∼ 𝛿𝐵𝐿 ∼ 𝐿/𝑅𝑚1/3 . 𝑏 ∼ 𝑅𝑚1/3𝐵0 .

22

B0

L

b

𝑙

after n turns:
nl=L

N.B. differs from
Sweet-Parker!



What’s the Physics?

Shear dispersion! (Moffatt, Kamkar ‘82)

𝜕𝑡𝐴 + റ𝑣 ∙ 𝛻𝐴 = 𝜂𝛻2𝐴 (Shearing coordinates)

𝑣𝑦 = 𝑣𝑦 𝑥 = 𝑣𝑦0 + 𝑥𝑣𝑦
′ +⋯

𝑑𝑘𝑥

𝑑𝑡
= −𝑘𝑦𝑣𝑦

′ ,
𝑑𝑘𝑦

𝑑𝑡
= 0

𝜕𝑡𝐴 + 𝑥𝑣𝑦
′𝜕𝑦𝐴 − 𝜂 𝜕𝑥

2 + 𝜕𝑦
2 𝐴 = 0

𝐴 = 𝐴 𝑡 exp 𝑖(𝑘 𝑡 ⋅ റ𝑥)

(Shear enhanced dissipation annihilates interior field)

So 𝜏𝑚𝑖𝑥 ≅ 𝜏𝑠ℎ𝑒𝑎𝑟𝑅𝑚
1/3=(𝑣𝑦

′−1)𝑅𝑚1/3
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Single Eddy Mixing -- Cahn-Hilliard

Structures are the key need understand how a single eddy
interacts with 𝜓 field

Mixing of 𝛻𝜓 by a single eddy characteristic time scales?

Evolution of structure?

Analogous to flux expulsion in MHD (Weiss, ‘66)

24

?
𝛻𝜓 ↔ 𝐵

Transport / Relaxation



Single Eddy Mixing -- Cahn-Hilliard

3 stages: (A) the ”jelly roll” stage, (B) the topological evolution stage, and
(C) the target pattern stage.
𝜓 ultimately homogenized in slow time scale, but metastable target 

patterns formed and merge.

Additional mixing time emerges. 25

(a) t=10

(b) t=70

(c) t=75

(d) t=80

(e) t=85

(f) t=400

(g) t=1500

(h) t=4000

A: Jelly roll B: reconnection C: Target

[Fan et.al. Phys. Rev. E
Rap. Comm. 2017]

Note coarsening!



[Ashourvan et.al. 2016]

Single Eddy Mixing

The bands merge on a time scale long relative to eddy turnover time.

The 3 stages are reflected in the elastic energy plot.

The target bands mergers are related to the dips in the target pattern stage.

The band merger process is similar to the step merger in drift-ZF staircases. 
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Episodic relaxation-coarsening Cahn-Hilliard dynamics



Back Reaction – Vortex Disruption

(MHD only) (A. Gilbert et.al. ‘16; J. Mak et.al. ‘17)

Demise of kinematic expulsion?
• Magnetic tension grows to react on vorticity evolution!

Recall: 𝑏 ∼ 𝐵0(𝑅𝑚
1/3)

• B.L. field stretched!

and 𝐵 ∙ 𝛻𝐵 = −
𝐵 2

𝑟𝑐
ො𝑛 +

𝑑

𝑑𝑠
(
𝐵 2

2
) Ƹ𝑡

|𝐵 ∙ 𝛻𝐵| ≅ 𝑏2/𝐿0

27

𝑟𝑐 ∼ 𝐿0
𝑑

𝑑𝑠
∼ 𝐿0

−1 vortex scale



Back Reaction – Vortex Disruption

So 𝜌
𝑑𝜔

𝑑𝑡
= Ƹ𝑧 ⋅ [𝛻 × (𝐵 ∙ 𝛻𝐵)]

→ 𝜌𝑢 ⋅ 𝛻𝜔 ∼ 𝑏2/𝑙𝐿0

Feedback → 1 for: 𝑅𝑚
𝑣𝐴0

𝑢

2
∼ 1

Critical value to disrupt vortex, end kinematics

Related Alfven wave emission.

Note for 𝑅𝑚 ≫ 1 → strong field not required

Will re-appear…

28

small BL scale enters

Remember this!

𝑣𝐴0
2 = 𝐵0

2/4𝜋𝜌



Some Aspects of 

CHNS Turbulence



MHD Turbulence – Quick Primer

(Weak magnetization / 2D)

Enstrophy conservation broken

Alfvenic in Brms field – “magneto-elastic” (E. Fermi ‘49)

𝜖 =
෤𝑣2 2

𝑙2
𝑙

𝐵𝑟𝑚𝑠
⟹ 𝐸 𝑘 = 𝜖𝐵𝑟𝑚𝑠

1/2𝑘−3/2

Dual cascade:

What is dominant (A. Pouquet)?
• conventional wisdom focuses on energy
• yet 𝐴2 conservation – freezing-in law!?
 Is the inverse cascade of 〈𝐴2〉 the ‘real’ process, with energy dragged to  

small scale by fluid?

30

Forward in energy

Inverse in 𝐴2 ∼ 𝑘−7/3
reduced transfer rate:

Kraichnan



Ideal Quadratic Conserved Quantities

31

• 2D CHNS

1. Energy

𝐸 = 𝐸𝐾 + 𝐸𝐵 = න(
𝑣2

2
+
𝜉2𝐵𝜓

2

2
)𝑑2𝑥

2. Mean Square Concentration

𝐻𝜓 = න𝜓2 𝑑2𝑥

3. Cross Helicity

𝐻𝐶 = න റ𝑣 ∙ 𝐵𝜓 𝑑
2𝑥

• 2D MHD

1. Energy

𝐸 = 𝐸𝐾 + 𝐸𝐵 = න(
𝑣2

2
+
𝐵2

2𝜇0
)𝑑2𝑥

2. Mean Square Magnetic Potential

𝐻𝐴 = න𝐴2 𝑑2𝑥

3. Cross Helicity

𝐻𝐶 = න റ𝑣 ∙ 𝐵𝑑2𝑥

Dual cascade expected!



Scales, Ranges, Trends

Fluid forcing Fluid straining vs Blob coalescence

Straining vs coalescence is fundamental struggle of CHNS turbulence

Scale where turbulent straining ~ elastic restoring force (due surface tension):
Hinze Scale

𝐿𝐻~(
𝜌

𝜉
)−1/3𝜖Ω

−2/9

32

How big is a raindrop?
• Turbulent straining 

vs capillarity.
• 𝜌𝑣2 vs 𝜎/𝑙.
[Hinze 1955]



Scales, Ranges, Trends

Elastic range: 𝐿𝐻 > 𝑙 > 𝐿𝑑: where elastic effects matter.

𝐿𝐻/𝐿𝑑~(
𝜌

𝜉
)−1/3𝜈−1/2𝜖Ω

−1/18
 Extent of the elastic range

𝐿𝐻 ≫ 𝐿𝑑 required for large elastic range case of interest

33

𝐻𝜓 Spectrum

𝐻𝑘
𝜓

𝑘𝑘𝑖𝑛 𝑘𝐻 𝑘𝑑

Elastic Range
Hydro-

dynamic 
Range

(𝐻𝑘
𝜓
= 𝜓2

𝑘)



• Key elastic range physics: Blob coalescence

• Unforced case: 𝐿 𝑡 ~𝑡2/3.

(Derivation: റ𝑣 ∙ 𝛻 റ𝑣~
𝜉2

𝜌
𝛻2𝜓𝛻𝜓 ⇒

ሶ𝐿2

𝐿
~

𝜎

𝜌

1

𝐿2
)

• Forced case: blob coalescence arrested at Hinze scale 𝐿𝐻.

• Blob coalescence suggests inverse cascade is fundamental here.

Scales, Ranges, Trends

34

• 𝐿 𝑡 ~𝑡2/3 recovered
• Blob growth arrest observed
• Blob growth saturation scale 

tracks Hinze scale (dashed lines) 



Cascades: Comparing the Systems

Blob coalescence in the elastic range of CHNS is analogous to flux 
coalescence in 2D MHD.

Suggests inverse cascade of 〈𝜓2〉 in CHNS.

Supported by statistical mechanics studies (absolute equilibrium 
distributions).

Arrested by straining.

35

MHD CHNS



Cascades  - the Story

So, dual cascade:

• Inverse cascade of 𝜓2

• Forward cascade of 𝐸

Inverse cascade of 𝜓2 is formal expression of blob coalescence 
process generate larger scale structures till limited by straining 

Forward cascade of 𝐸 as usual, as elastic force breaks enstrophy 
conservation 

Forward cascade of energy is analogous to counterpart in 2D MHD
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Cascades

Spectral flux of 𝐴2 : Spectral flux of 𝜓2 :

MHD: weak small scale forcing on 𝐴 drives inverse cascade

CHNS: 𝜓 is unforced aggregates naturally ⟺ structure of free energy

Both fluxes negative inverse cascades
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Power Laws
 𝐴2 spectrum: 𝜓2 spectrum:

Both systems exhibit 𝑘−7/3 spectra.

Inverse cascade of 𝜓2 exhibits same power law scaling, so 
long as 𝐿𝐻 ≫ 𝐿𝑑, maintaining elastic range: Robust process.

38
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Power Laws

Derivation of -7/3 power law:

For MHD, key assumptions:

• Alfvenic equipartition (𝜌⟨𝑣2⟩ ∼
1

𝜇0
⟨𝐵2⟩ )

• Constant mean square magnetic potential dissipation rate 𝜖𝐻𝐴, so

𝜖𝐻𝐴~
𝐻𝐴

𝜏
~(𝐻𝑘

𝐴)
3

2𝑘
7

2.

Similarly, assume the following for CHNS:

• Elastic equipartition (𝜌⟨𝑣2⟩ ∼ 𝜉2⟨𝐵𝜓
2 ⟩)

• Constant mean square magnetic potential dissipation rate 𝜖𝐻𝜓, so

𝜖𝐻𝜓~
𝐻𝜓

𝜏
~(𝐻𝑘

𝜓
)
3

2𝑘
7

2.
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𝑓𝜙

CHNS
More Power Laws

Kinetic energy spectrum (Surprise!):

2D CHNS: 𝐸𝑘
𝐾~𝑘−3;

2D MHD: 𝐸𝑘
𝐾~𝑘−3/2.

The -3 power law:

• Closer to enstrophy cascade range scaling, in 2D Hydro turbulence.

• Remarkable departure from expected -3/2 for MHD. Why? 

Why does CHNSMHD correspondence hold well for 
𝜓2

𝑘~ 𝐴2 𝑘~𝑘
−7/3, yet break down drastically for energy???

What physics underpins this surprise??
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Interface Packing Matters! – Pattern!

Need to understand differences, as well as similarities, between 

CHNS and MHD problems. 

41

MHD CHNS

2D CHNS:
Elastic back-reaction is limited to regions of 

density contrast i.e. |𝐵𝜓| = |𝛻𝜓| ≠ 0.

As blobs coalesce, interfacial region 
diminished. ‘Active region’ of elasticity decays.

2D MHD:
 Fields pervade system.



Interface Packing Matters!

Define the interface packing fraction 𝑃:

𝑃 =
# of grid points where |𝐵𝜓|>𝐵𝜓

𝑟𝑚𝑠

# of total grid points

𝑃 for CHNS decays;

𝑃 for MHD stationary!

𝜕𝑡𝜔 + റ𝑣 ∙ 𝛻𝜔 =
𝜉2

𝜌
𝐵𝜓 ∙ 𝛻𝛻

2𝜓 + 𝜈𝛻2𝜔: small 𝑃 local back reaction is

weak.

Weak back reaction reduce to 2D hydro k-spectra

Blob coalescence coarsens interface network
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What Are the Lessons?

Avoid power law tunnel vision!

Real space realization of the flow is necessary to understand key 
dynamics. Track interfaces and packing fraction 𝑃.

One player in dual cascade (i.e. 𝜓2 ) can modify or constrain the 
dynamics of the other (i.e. 𝐸).

Against conventional wisdom, 𝜓2 inverse cascade due to blob 
coalescence is the robust nonlinear transfer process in CHNS 
turbulence.

Begs more attention to magnetic helicity in 3D MHD.
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Transport and Beyond

- Active Scalar Transport

- Two Stage Evolution

- Revisiting Quenching



Physics: Active Scalar Transport

• Magnetic diffusion, 𝜓 transport are cases of active scalar transport

• (Focus: 2D MHD) (Cattaneo, Vainshtein ’92, Gruzinov, P. D. ’94, ’95)

𝜕𝑡𝐴 + 𝛻𝜙 × Ƹ𝑧 ∙ 𝛻𝐴 = 𝜂𝛻2𝐴

𝜕𝑡𝛻
2𝜙 + 𝛻𝜙 × Ƹ𝑧 ∙ 𝛻𝛻2𝜙 = 𝛻𝐴 × Ƹ𝑧 ∙ 𝛻𝛻2𝐴 + 𝜈𝛻2𝛻2𝜙

• Seek 𝑣𝑥𝐴 = −𝐷𝑇
𝜕 𝐴

𝜕𝑥
− 𝜂

𝜕 𝐴

𝜕𝑥

• Point: 𝐷𝑇 ≠ σ
𝑘
|𝑣𝑘|

2 𝜏
𝑘
𝐾 , often substantially less

• Why: Memory! ↔ Freezing-in

• Cross Phase

scalar mixing – the usual

back-reactionturbulent resistivity



Conventional Wisdom

• [Cattaneo and Vainshtein 1991]: turbulent 
transport is suppressed even for a weak large 
scale magnetic field is present.

• Starting point: 

• Assumptions: 
• Energy equipartition:

• Average B can be estimated by:

• Define Mach number as:

• Result for suppression stage:

• Fit together with kinematic stage result: 

• Lack physics interpretation of 𝜂𝑇 !

𝑀2 = 𝑣𝐴
2/ ෤𝑣2 = 𝑣2 /𝑣𝐴

2 = 𝑣2 /
1

𝜇0𝜌
𝐵2



Origin of Memory?

• (a) flux advection vs flux coalescence
• intrinsic to 2D MHD (and CHNS)

• rooted in inverse cascade of 𝐴2 - dual cascades

• (b) tendency of (even weak) mean magnetic field to “Alfvenize”
turbulence [cf: vortex disruption feedback threshold!]

• Re (a): Basic physics of 2D MHD



Memory Cont’d

• v.s.

• Obvious analogy: straining vs coalescence; CHNS

• Upshot: closure calculation yields:

Γ𝐴 = −σ
𝑘′
[𝜏𝑐
𝜙
𝑣2 𝑘′ − 𝜏𝑐

𝐴 𝐵2 𝑘′]
𝜕 𝐴

𝜕𝑥
+⋯

flux of potential competition

scalar advection vs. coalescence (“negative resistivity”)
(+) (-)

N.B.:
Coalescence 
 Negative diffusion 
 Bifurcation



Conventional Wisdom, Cont’d

• Then calculate 〈𝐵2〉 in terms of 〈𝑣2〉. From:

• Multiplying by 𝐴 and sum over all modes:

• Therefore: 

• Define Mach number as:

• Result:  

• This theory is not able to describe 𝐵0 → 0, though 
may be extended (?!)

Dropped stationary case Dropped periodic boundary  introduce nonlocality?!



Is this story “the truth, the whole truth and 

nothing but the truth’?

 A Closer Look



Two Stage Evolution:

• 1. The suppression stage: 
the (large scale) magnetic
field is sufficiently strong so 
that the diffusion is 
suppressed.

• 2. The kinematic decay stage: 
the magnetic field is 
dissipated so the diffusion 
rate returns to the kinematic 
rate. 

• Suppression is due to the 
memory induced by the 
magnetic field.

suppression
stage

kinematic
stage



New Observations

• With no imposed 𝐵0, in suppression stage:

• v.s. same run, in kinematic stage (trivial):

Field 
Concentrated!



New Observations Cont’d

• Nontrivial structure formed in real space during the
suppression stage.

• 𝐴 field is evidently composed of “blobs”.

• The low 𝐴2 regions are 1-dimensional. 

• The high 𝐵2 regions are strongly correlated with low 
𝐴2 regions, and also are 1-dimensional.

• We call these 1-dimensional high 𝐵2 regions 
``barriers'', because these are the regions where 
mixing is reduced, relative to 𝜂𝐾.

 Story one of ‘blobs and barriers’



Evolution of PDF of A

• Probability
Density
Function (PDF)
in two stage:

• Time evolution:
horizontal “Y”.

Δ𝐴

suppression
stage

kinematic
stage

• The PDF changes from double 
peak to single peak as the system 
evolves from the suppression 
stage to the kinematic stage.



2D CHNS and 2D MHD

• The 𝐴 field in 2D MHD in suppression stage is
strikingly similar to the 𝜓 field in 2D CHNS (Cahn-
Hilliard Navier-Stokes) system:

𝜓 field in 2D CHNS 𝐴 field in 2D MHD
v.s.



Unimodal Initial Condition

• One may question whether the bimodal PDF feature is 
purely due to the initial condition. The answer is No.

• Two non-zero peaks in PDF of A still arise, even if the 
initial condition is unimodal.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)



The problem of the mean field 〈𝑩〉
What does mean mean?

• 〈𝐵〉 depends on the averaging 
window.

• With no imposed external field, 
B is highly intermittent, therefore 
the 〈𝐵〉 is not well defined.

𝑥

𝐴

| 𝐵 | ∼ 𝐴2 /𝐿0✓ 𝐵 not well defined

v.s.

Reality

𝑥

𝐴



Revisiting Quenching



New Understanding
• Summary of important length scales:

• System size 𝐿0
• Envelope size 𝐿𝑒𝑛𝑣 emergent (blob)

• Stirring length scale 𝐿𝑠𝑡𝑖𝑟
• Turbulence length scale 𝑙, here we use Taylor microscale 𝜆

• Barrier width 𝑊 emergent

• Quench is not uniform. Transport coefficients differ in 
different regions.

• In the regions where magnetic fields are strong, 
𝑅𝑚/𝑀2 is dominant. They are regions of barriers.

• In other regions, i.e. Inside blobs, 𝑅𝑚/𝑀′2 is what 

remains. 𝑀′2 ≡ 𝑉2 /
1

𝜌
𝐴2 /𝐿𝑒𝑛𝑣

2



New Understanding, cont’d

• From

• Retain 2nd term on RHS. Average taken over an 
envelope/blob scale.

• Define diffusion (closure):

• Plugging in:

• For simplicity: 

• where 𝐿𝑒𝑛𝑣 is the envelope size. Scale of 𝛻2〈𝐴2〉.

• Define new strength parameter:

• Result:  



𝜂𝑇 = 𝑉 𝑙 / 1 +
𝑅𝑚
𝑀2

+
𝑅𝑚
𝑀′2

• Barriers:

𝜂𝑇 ≈ 𝑉 𝑙 / 1 + 𝑅𝑚
𝐵 2

𝜌 ෨𝑉2

• Blobs:

𝜂𝑇 ≈ 𝑉 𝑙 / 1 + 𝑅𝑚
𝐴2

𝜌𝐿𝑒𝑛𝑣
2 ෨𝑉2

• Quench stronger in barriers, ,non-uniform

Strong field

Weak effective field



Barrier Formation



Formation of Barriers

• How do the barriers form?

• From above, strong B regions can support negative incremental 

𝜂𝑇 = 𝛿Γ𝐴/𝛿 −𝛻𝐴 < 0, suggesting clustering

• 𝜂𝑇 > 0

• Positive feedback:  a twist on a familiar theme

B is strong in a specific region diffusion of A is negative

∇A increasesB in that region increases

flux coalescence



Formation of Barriers,  Cont’d

• Negative resistivity leads to barrier formation.

• The S-curve reflects due to the dependence of Γ𝐴 on B.

• When slope is negative negative (incremental) resistivity.

Γ𝐴

- 𝐵

unstable
negative

Barriers 

Bistability of Γ𝐴 vs 𝛻𝐴

 a familiar theme

Landscape 
unknown

Quenched 𝜂𝑇

Kinematic

𝜂𝐾



Describing the Barriers

• How to measure the barrier width 𝑊.

• Starting point: 

• Use 〈𝐴2〉 to calculate Δ𝐴

• Define the barrier regions as: 

• Define barrier packing fraction:

• Use use the magnetic fields in the barrier regions to 
calculate the magnetic energy:

• Thus

• So barrier width can be estimated by:

N.B. All magnetic energy in the barriers

arbitrary threshold



Describing the Barriers

• Time evolution of 𝑃 and 𝑊:

- P, W collapse in decay

- 𝑀′ rises

• Sensitivity of 𝑊:
• 𝐴0 or 1/𝜇0𝜌 greater 𝑊 greater;

• 𝑓0 greater, 𝑊 smaller; (ala’ Hinze)

• 𝑊 not sensitive to 𝜂 or 𝜈.

(a) (b) (c) (d) (e)



Staircase (inhomogeneous Mixing, Bistability)

• Staircases emerge spontaneously! - Barriers

• Initial condition is the usual cos function (bimodal)

• The only major sensitive parameter (from runs above) 
is the forcing scale is k=32 (for all runs above k=5).

• Resembles the staircase in MFE.

(1) (2) (3) (4)



• Magnetic fields suppress turbulent diffusion in 2D 
MHD by: formation of intermittent transport barriers.

• Magnetic structures:

• Quench not uniform:

• Barriers form due to negative resistivity:

• Formation of “magnetic staircases” observed for some 
stirring scale

Conclusions / Summary

Barriers – thin, 1D strong field regions
Blobs – 2D, weak field regions

barriers, strong B blobs, weak B, 𝛻2〈𝐴2〉 remains

Γ𝐴

- 𝐵

flux coalescence



Future Works

• Extension of the transport study in MHD:
• Numerical tests of the new 𝜂𝑇 expression ?

• What determines the barrier width and packing fraction ?

• Why does layering appear when the forcing scale is small ?

• What determines the step width, in the case of layering 

• The transport study may also be extended to 3D MHD ( 𝑨 ⋅ 𝑩
important instead of 𝐴2 ) 

• Other similar systems can also be studied in this spirit. e.g. 
Oldroyd-B model for polymer solutions. (drag reduction)

• Reduced Model of Magnetic Staircase



General Conclusions

• Dual (or multiple) cascades can interact with each other, and 
one can modify another.

• We also show how a length scale, e.g. the Hinze scale in 2D 
CHNS, emerges from the balance of kinetic energy and elastic 
energy in blobby turbulence.  blob scale

• We see that negative incremental diffusion (flux/blob 
coalescence) can lead to novel real space structure in a simple 
system.

• Avoid fixation on k-spectra/power laws. Real space structure 
encodes info re: interactions.
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